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The relativistic inverse stellar structure problem determines the equation of state of the stellar
matter given a knowledge of suitable macroscopic observable properties (e.g. their masses and radii)
of the stars composed of that material. This study determines how accurately this equation of state
can be determined using noisy mass and radius observations. The relationship between the size of
the observational errors and the accuracy of the inferred equation of state is evaluated, and the
optimal number of adjustable equation of state parameters needed to achieve the highest accuracy
is determined.

I. INTRODUCTION

The quantity and quality of astrophysical observations
of the masses and radii of neutron stars has improved sig-
nificantly in the past decade [1–9]. Masses have now been
measured at the few percent level for dozens of neutron
stars, and both mass and radius have been measured for
a few neutron stars at the 10-20% level. It is well known
that a knowledge of the masses and radii of neutron stars
can be used to infer the equation of state of the high den-
sity material in the cores of these stars [10]. The purpose
of this paper is to apply a simple uncertainty quantifica-
tion analysis [11] to the relativistic inverse stellar struc-
ture problem, i.e. the problem of determining the high
density neutron-star equation of state from a knowledge
of the masses and radii of those stars. The goal of this
analysis is to determine the relationship between the ac-
curacy of the available mass-radius data with the accu-
racy of the equation of state that can be inferred from
those data.

Section II of this paper describes the method of solving
the relativistic inverse stellar structure problem used in
this study. This method constructs a parametric repre-
sentation of the high-density equation of state by fixing
its parameters to minimize the differences between the
resulting model neutron stars and the observed mass-
radius data [12–14]. The particular parametric equation
of state representation used in this study is a causal spec-
tral representation with basis functions constructed from
Chebyshev polynomials [15]. The basic properties of this
equation of state representation are summarized in Ap-
pendix A.

Section III constructs the collections of mock noisy
mass-radius data used in this study to evaluate the ac-
curacy of the equations of state determined from them.
These mock noisy data are constructed here by adding
random errors of various sizes to the exact masses and
radii computed from the GM1L nuclear-theory based
neutron-star equation of state [16–18]. Four collections
of mock data, each containing 1000 noisy mass-radius
curves, are constructed with random fractional error am-
plitudes 0.1%, 1%, 10%, and 20%.

Section IV solves the relativistic inverse stellar struc-

ture problem using the mock noisy mass-radius data pre-
pared in Sec. III. Parameterized equations of state us-
ing different numbers of spectral parameters, Nparms =
1, ..., 5 are determined for each noisy mass-radius curve
by solving the inverse stellar structure problem as de-
scribed in Sec. II. The accuracy of these parametric
equations of state are evaluated by measuring the dif-
ferences between them and the exact GM1L equation of
state from which the mock data are constructed. The
dependence of these equation of state errors on the accu-
racy of the mock observational data is then evaluated for
equation of state representations with different numbers
of spectral parameters.
Section V presents a brief summary of the results of

the uncertainty quantification analysis presented in this
study, along with a discussion of some interesting impli-
cations of these results.

II. INVERSE STELLAR STRUCTURE

PROBLEM

The matter in the cores of neutron stars is driven to
very high temperatures by the gravitational collapse of
the matter that forms these stars. These temperatures
briefly become high enough to disrupt the atomic nu-
clei of this matter, so this material is expected to have
universal thermodynamic properties determined by nu-
clear physics and not on the prior thermodynamic his-
tory of material from which it formed. All neutron stars
are therefore expected to be composed of material hav-
ing the same high-density equation of state. The rela-
tivistic inverse stellar structure problem determines this
equation of state from a knowledge of the macroscopic
observable properties of neutron stars, e.g. their masses
and radii or tidal deformabilities [14]. This section sum-
marizes the particular solution to this problem used in
this study [12, 13].
The relativistic inverse stellar structure problem is

solved here by representing the unknown equation of
state parametrically, ǫ = ǫ(p, υa), where ǫ is the total
energy density of the material, p is the pressure, and
the υa for a = 1, ..., Nparms are adjustable parameters.
These parameters are fixed by making the stellar models
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based on this equation of state match the observational
mass-radius data {Mi, Ri} for i = 1, ..., NMR as closely
as possible.
The particular equation of state representation used in

this study is based on a Chebyshev polynomial spectral
expansion [15] which is described in Appendix A. The
Oppenheimer-Volkoff relativistic stellar structure equa-
tions [19] are solved using the equation of state with spec-
ified values of υa to determine the masses, M(pic, υa), and
radii, R(pic, υa), of the stellar models with central pres-
sures pic. Given a collection of mass-radius observables,
{Mi, Ri} for i = 1, ..., NMR, the values of the equation
of state parameters υa are adjusted to make the stellar
model properties {M(pic, υa), R(pic, υa)} match the ob-
servables {Mi, Ri} as closely as possible. This is done
by minimizing the error function χ2, defined by,

χ2(pic, υa) =
1

NMR

NMR
∑

j=1

{

[

log

(

M(pjc, υa)

Mj

)]2

+

[

log

(

R(pjc, υa)

Rj

)]2
}

, (1)

with respect to the equation of state parameters, υa, as
well as the central pressures, pic, of the stars with ob-
servational data points, {Mi, Ri}. The equation of state
determined by the parameters υa that minimize χ2 is
therefore an approximate solution to the inverse stellar
structure problem.
The mock observational data points {Mi, Ri} used in

this study were constructed from a particular nuclear-
theory based equation of state. Since the exact equation
of state is known in this case, it is possible to evaluate the
accuracy of the parametric equation of state, ǫ = ǫ(p, υa),
determined by the solution to the inverse stellar structure
problem. This is done by evaluating the equation of state
error function, ∆, defined by,

∆2(υa) =
1

NEOS

NEOS
∑

k=1

[

log

(

ǫ(pk, υa)

ǫk

)]2

, (2)

where {ǫk, pk} are points from the exact equation of
state table used to generate the mock observational data
points, {Mi, Ri}. The Chebyshev polynomial based
equation of state representations used in this study have
been shown to provide convergent representations for a
wide range of neutron-star equations of state [15]. This
study explores the extent to which approximate solutions
to the inverse stellar structure problem are also conver-
gent in the sense that they produce equation of state
error functions ∆(υa) that decrease toward zero as the
number of parameters υa increases.

III. NOISY MASS-RADIUS DATA

Mock noisy observational data {Mi, Ri} are con-
structed for this study by adding random errors to a

collection of points {M̃i, R̃i} from the exact mass-radius
curve associated with a known equation of state. These
random errors are parameterized by an error amplitude
A and a random phase variable δ. The noisy mock data
{Mi, Ri} are generated from {M̃i, R̃i}:

Mi = (1 + δA) M̃i, (3)

Ri = (1 + δA) R̃i. (4)

The random phase variables δ are uniformly distributed
over the domain −1 ≤ δ ≤ 1. They are computed for
this study using the random number generator ran2 from
Ref. [20]. The error amplitude A is the maximum frac-
tional error of each point in each noisy mock observa-
tional mass-radius curve, {Mi, Ri}.

The reference equation of state used to compute the
mock {Mi, Ri} data for this study is the nuclear-theory
based equation of state GM1L. This equation of state was
constructed in Ref. [16] from the relativistic mean field
GM1 equation of state of Ref. [17] by adjusting the slope
of the symmetry energy to agree with the established
value, L = 55 MeV, using the formalism developed in
Ref. [18]. The masses and radii of the neutron-star mod-
els computed from this equation of state are illustrated in
Fig. 1 for the models with masses in the astrophysically
interesting range M ≥ 1.2Msun.
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FIG. 1: Neutron-star model masses and radii computed from
the GM1L nuclear-theory based equation of state.

The reference {M̃i, R̃i} data points used in this study
were selected from the mass-radius curve illustrated in
Fig. 1. The number of data points NMR was chosen to
be NMR = 10 for this study. This aspirational choice
is somewhat larger than the currently available number
of high quality data points, but is within the range of
what might become available in the not too distant fu-
ture. The distribution of these NMR = 10 data points
are also chosen aspirationally for this study. Rather than
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choosing these points randomly from the astrophysically
relevant range of masses, 1.2Msun ≤ M ≤ Mmax, they
are chosen here to sample models whose central pres-
sures are relatively uniformly distributed along the high
density equation of state curve. Figure 2 illustrates the
M̃i chosen here as a function of the central pressures
of those stellar models. The equation of state errors
achieved with these aspirational choices for the mock ob-
servational data are likely to be somewhat smaller than
could be achieved with a smaller number of randomly
distributed data points. The numerical values of these
exact {M̃i, R̃i} data points are listed in Table I.
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FIG. 2: Neutron-star masses as functions of their central pres-
sures for the ten {M̃i, R̃i} reference data points used in this
study. The constant pmin = 1.20788 × 1032 erg/cm3 used to
scale the pressures in this figure is the lower limit of the do-
main on which spectral representations are used for the high
density equation of state.

TABLE I: {M̃i, R̃i} data for the neutron-star models com-
puted from the GM1L nuclear-theory equation of state. These
reference {M̃i, R̃i} values are used to generate the noisy data
sets for the uncertainty quantification analysis in this study.

M̃/Msun R̃(km) M̃/Msun R̃(km)

1.244629 12.90062 2.200004 12.34184

1.556269 12.92859 2.256765 12.13824

1.802454 12.85875 2.291466 11.93727

1.984403 12.71947 2.310322 11.74336

2.112802 12.54009 2.318418 11.49951

Starting from the exact reference {M̃i, R̃i} given in
Table I, collections of noisy mock data {Mi, Ri} were
constructed using Eqs. (3) and (4) for four different frac-
tional error amplitudes: A = {0.2, 0.1, 0.01, 0.001}. The
larger values, A = {0.2, 0.1} , are more or less at the
currently achievable observational error levels, while the
smaller values A = {0.01, 0.001} were included to ex-
plore how accurately the equation of state might be
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FIG. 3: Regions of the mass-radius plane occupied by the per-
turbed {Mi, Ri} data sets used in this study. Random per-
turbations with amplitudes A = {0.2, 0.1, 0.01, 0.001} were

added to the exact {M̃i, R̃i} points from the GM1L equation
of state to construct data sets with 1000 perturbed {Mi, Ri}
curves for each of the four error amplitudes.

determined if/when more accurate data become avail-
able. Mock observational data collections, each con-
taining 1000 {Mi, Ri} noisy mass-radius curves, were
constructed for each of these error amplitudes: A =
{0.2, 0.1, 0.01, 0.001}. Figure 3 illustrates the regions of
the mass-radius plane occupied by the points in these
four mock observational data collections.

IV. UNCERTAINTY QUANTIFICATION

This section describes the uncertainty quantification
analysis of the relativistic inverse stellar structure prob-
lem performed for this study. This analysis begins
by solving the inverse stellar structure problem out-
lined in Sec. II for each collection of mock observa-
tional data {Mi, Ri} described in Sec. III. These so-
lutions provide equations of state for each data set in
the collections defined by their error amplitudes, A =
{0.2, 0.1, 0.01, 0.001}. Evaluating the relationship be-
tween the accuracies of these equations of state and the
accuracies of the mock observational data used to com-
pute them determines the uncertainty quantification for
this problem.
The first step in this analysis is to minimize

the differences between the model observables
{M(pic, υa), R(pic, υa)} and the mock observational
data {Mi, Ri} as measured by the mass-radius fitting
function χ defined in Eq. (1). These minimizations
have been carried out for this study for each of the
mock observational data sets using equation of state
representations with Nparms = 1, ..., 5 spectral parame-
ters. The numerical calculations used in this study were
performed using two independent codes to confirm the
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FIG. 4: Values of χ̄, the mass-radius fitting errors defined
in Eq. (1) averaged over the collection of mock observational
{Mi, Ri} data, as functions of Nparms, the number of spectral
parameters used to model the high density equation of state.

accuracy of the results. The χ2 minimizations of were
carried out numerically using a Fortran implementation
of the Levenburg-Marquardt algorithm as described
in Ref. [20], and using the scipy.optimize.least squares
implementation in Python [21]. The resulting minimal
values of χ obtained by these independent codes agree
to within a few percent.

Figure 4 illustrates how well the model observables are
able to fit the collections of mock noisy data with error
amplitudes A = {0.2, 0.1, 0.01, 0.001}. The quantity χ̄ is
the average of the minimum values of χ over the the 1000
{Mi, Ri} data sets with error amplitude A. Figure 4 il-
lustrates χ̄ for each collection of mock data as functions
of the number of spectral parameters used to compute the
model observables. These results show that these mini-
mum χ̄ values are about half the values of the observa-
tional errors for the A = {0.2, 0.1, 0.01} data collections,
as well as the Nparms = 3, .., 5 cases for the A = 0.001
collection. The solid (black) curve in Fig. 4 is the graph

of the minimum χ values for the exact reference {M̃i, R̃i}
data. These exact results, labeled A = 0.0 in Fig. 4, show
that the minimum values of χ̄ for the Nparms = 1, 2 cases
of the A = 0.001 collection are limited by the accuracy of
the spectral representation of the equation of state rather
than the accuracy of the observational {Mi, Ri} data.

Figure 5 illustrates the range of χ values obtained for
each collection of noisy {Mi, Ri} data. Note that the up-
per limits of these χ ranges are smaller than the obser-
vational data errors for the A = {0.2, 0.1, 0.01} data col-
lections, and for the Nparms = 4, 5 cases of the A = 0.001
collection. These results show that the neutron-star mod-
els constructed here do a good job of representing noisy
observational {Mi, Ri} data at an accuracy level com-
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FIG. 5: Ranges of the minimum values of χ, the mass-radius
fitting errors defined in Eq. (1), for each collection of mock
observational {Mi, Ri} data as functions of Nparms, the num-
ber of spectral parameters used to model the high-density
equation of state.

mensurate with the amplitude of the observational errors.

The next step is to evaluate the accuracy of the equa-
tions of state determined by the spectral parameters, υa,
that minimize the mass-radius fitting errors χ. These
accuracies are measured by comparing the model equa-
tion of state determined by the minimizing parameters,
υa, with the GM1L equation of state used to compute
the exact {M̃i, R̃i} data. These comparisons are made
by evaluating the equation of state error function ∆ de-
fined in Eq. (2) for each {Mi, Ri} data set. Figure 6
illustrates ∆̄, the average value of ∆ over each of the
collections, A = {0.2, 0.1, 0.01, 0.001}, along with the re-
sults for the exact A = 0.0 case, as functions of the num-
ber of spectral parameters, Nparms. This figure shows
that increasing the number of spectral parameters does
not necessarily increase the accuracy of the equation of
state determined by the inverse stellar structure prob-
lem using noisy mass-radius data. For the A = {0.2, 0.1}
collections, the optimal number of spectral parameters
is Nparms = 1. Observational data with higher accu-
racies can benefit, however, from higher order spectral
representations. The best accuracy for the A = 0.01
collection could perhaps be improved a little over the
Nparms = 1 case using Nparms = 3, and the accuracy for
the A = 0.001 collection could definitely be improved
over the Nparms = 1 case using Nparms = 4.

Figure 7 illustrates the range of ∆ values obtained
for the collections of noisy {Mi, Ri} data with A =
{0.2, 0.1, 0.01, 0.001} as well as the values obtained for

the A = 0.0 case using the exact {M̃i, R̃i} data. Also
shown for comparison in Fig. 7 are the values of ∆ for
the optimal spectral representations of the GM1L equa-
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FIG. 6: Equation of state errors ∆̄ averaged over each collec-
tion of 1000 {Mi, Ri} data sets are shown as functions of the
number of spectral parameters Nparms. The fitting error ∆ is
also shown for the equation of state obtained using the exact,
A = 0.0, {M̃i, R̃i} data set as the solid (black) curve.

tion of state. These optimal representations are obtained
by minimizing ∆ defined in Eq. (2) with respect to the
equation of state parameters υa [15]. These optimal val-
ues are distinct from and smaller than the values obtained
for the A = 0.0 case by minimizing χ using the exact
{M̃i, R̃i} data. The upper limits of the ranges of ∆ in the
A = {0.2, 0.1, 0.01} data collections are smallest for the
Nparms = 1 spectral representations, showing that this is
the best spectral order to use for these cases. These upper
range limits show that the equation of state can be deter-
mined at an accuracy level commensurate with the size
of the observational error using an Nparms = 1 spectral
representation, unless the observational error is smaller
than A = 0.01. The results in Fig. 7 also show that
improving the accuracy with which the equation of state
can be determined by adding spectral parameters beyond
Nparms = 1 will not succeed unless the error levels in the
observational {Mi, Ri} data are at the A = 0.001 level or
smaller. It is also interesting to note that the minimum
range of the A = 0.001 data in Fig. 7 extend almost all
the way to the optimal GM1L values. Therefore some
combinations of mass-radius errors provide more accu-
rate solutions to the inverse structure problem than the
exact mass-radius data. Unfortunately it is not possible
to know a priori what those optimal mass-radius error
combinations are for any given equation of state.

V. DISCUSSION

This study has evaluated the accuracy with which
the neutron-star equation of state can be determined
by solving the inverse relativistic stellar structure prob-
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FIG. 7: Ranges of the values of ∆, the equation of state
fitting error defined in Eq. (2), for the high density equation
of state determined by the best fits for each of the perturbed
{Mi, Ri} data sets. Also shown as the circular data points
is the equation of state error ∆ associated with the optimal
spectral fit to the exact GM1L equation of state from which
the noisy data sets were constructed for this study.

lem using noisy mass and radius data. Large collec-
tions of mock observational mass-radius data were pre-
pared by adding random errors with a range of sizes,
A = {0.2, 0.1, 0.01, 0.001}, to the exact mass-radius val-
ues computed from a known neutron-star equation of
state. The inverse stellar structure problem was solved
using these mock data, and the accuracy of the result-
ing equations of state were evaluated by comparing them
to the nuclear-theory equation of state used to construct
of the mock mass-radius data. These tests show that
in most cases the equation of state can be determined
at an accuracy level commensurate with the accuracy of
the mass-radius observations. The exceptions to this ba-
sic result were for very high accuracy mass-radius data,
A ≤ 0.001, where the accuracy of the equation of state
could be limited by the accuracy of the equation of state
representation rather than the accuracy of the mass-
radius data.

One interesting, and perhaps somewhat counter intu-
itive, finding of this study is the fact that increasing
the number of parameters included in the spectral rep-
resentation does not in general increase the accuracy of
the equation of state determined by the inverse stellar
structure problem using noisy mass-radius data. The av-
erage equation of state errors, ∆̄, are smallest for the
Nparms = 1 representations of the noisy mass-radius data
with error amplitudes A = {0.2, 0.1}. Increasing Nparms

in these cases produces worse approximations. This non-
convergent behavior can occur when attempting to fit
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noisy data with models having too many parameters.1

The exceptions to this general rule are cases with much
higher accuracy data, A = {0.01, 0.001}. The A = 0.01
case is marginal, but ∆̄ is decreased somewhat by in-
creasing from Nparms = 1 to Nparms = 3 in this case.
The A = 0.001 case is more clear cut; ∆̄ is significantly
reduced by increasing from Nparms = 1 to Nparms = 3 or
4.

The physical neutron-star equation of state is still un-
known at this point. Therefore in the analysis of actual
mass-radius observations it is not possible to evaluate a
direct measure of the accuracy of the inferred equation
of state with the ∆ measure used here. Consequently it
is more difficult in real situations to determine the op-
timal number of equation of state parameters, Nparms,
to use for the data analysis. The results of this study,
however, suggest a possible way to do this. Consider
the Nparms dependence of the average mass-radius fit-
ting errors, χ̄, illustrated in Fig. 4. The values of χ̄
in this study are essentially independent of Nparms for
the A = {0.2, 0.1, 0.01} collections of mock mass-radius
data. Thus the quality of the model fits to those mass-
radius data are not significantly improved beyond the
Nparms = 1 fits. This result is in good agreement with the
average accuracies, ∆̄, of the equation of state fits shown
in Fig. 6 using those mock data. Only the A = 0.001
curve in Fig. 4 shows a significant improvement in χ̄ at
Nparms = 3, in good agreement again with the average
accuracy ∆̄ obtained for that case. This suggests that the
analysis of real mass-radius data should include evaluat-
ing the mass-radius fitting errors χ for a range of values of
Nparms using a convergent representation of the equation
of state. This study suggests that the optimal choice of
Nparms is the point where χ becomes relatively constant
for higher values of Nparms. Using this approach requires
the use of a parametric equation of state representation
whose accuracy can be improved by increasing the num-
ber of parameters, e.g. those in Refs. [15, 22–24], rather
than a representation having a fixed number of parame-
ters like Ref. [25].

Another detail that deserves a little more discussion
is the difference between the A = 0.0 results shown in
Figs. 4–7, and the optimal GM1L spectral fit shown in
Fig. 7. The A = 0.0 results are solutions to the inverse
stellar structure problem using the exact {M̃i, R̃i} data.

(The “exact” {M̃i, R̃i} used here have fractional errors

1 Consider the simple case of fitting an exact straight line in two-

dimensions using three noisy data points located around this

line. Fitting these data with two parameters would produce a line

whose location and slope approximate the exact line at some level

of accuracy. Using three parameters, however, would produce a

parabola that exactly matches the data but could be a much

worse model of the exact line. The broad regions occupied by

the large error-amplitude noisy mass-radius data in Fig. 3 do not

provide enough structure to determine any higher-order spectral

parameters beyond Nparms = 1 for the A = {0.2, 0.1} data sets.

below 10−7.) The A = 0.0 curves in the various figures
illustrate how well the inverse structure problem could be
solved if observational errors were significantly reduced
below present levels. The results for the optimal GM1L
spectral fit shown in Fig. 7 represent the accuracy of the
spectral fit obtained by minimizing ∆(υa) in Eq. (2) with
respect to variations in the spectral parameters υa. The
difference between the A = 0.0 and the optimal GM1L
curves in Fig. 7 shows that there are (generally small)
limitations to the accuracy of the solutions of the inverse
structure problem that go beyond the errors in the ob-
servational data or the intrinsic accuracy of the spectral
representations. These differences might be caused by
the limited number of data NMR or the distribution of
mass-radius data used in this study.

Appendix A: Causal Spectral Representations

This Appendix summarizes the Chebyshev based
causal spectral representations of the high-density
neutron-star equations of state used in this study, de-
veloped originally in Ref. [15].
The speed of sound, v, in a barotropic fluid is deter-

mined by the equation of state: v2 = dp/dǫ [26]. These
sound speeds are causal if and only if the velocity func-
tion Υ,

Υ =
c2 − v2

v2
, (A1)

is non-negative, Υ ≥ 0, where c is the speed of light.
The velocity function Υ is determined by the equation

of state: Υ(p) = c2 dǫ/dp − 1. Conversely, Υ(p) can be
used as a generating function from which the standard
equation of state, ǫ = ǫ(p), can be determined by quadra-
ture. The definition of the velocity function Υ(p) can be
re-written as the ordinary differential equation,

dǫ(p)

dp
=

1

c2
+

Υ(p)

c2
. (A2)

This equation can then be integrated to determine the
equation of state, ǫ = ǫ(p):

ǫ(p) = ǫmin +
p− pmin

c2
+

1

c2

∫ p

pmin

Υ(p′)dp′. (A3)

Causal parametric representations of the neutron-
star equation of state can be constructed by express-
ing Υ(p, υa) as a spectral expansion based on Chebyshev
polynomials developed in Ref. [15]:

Υ(p, υa) = Υmin exp







Nparms−1
∑

a=0

υa(1 + y)Ta(y)







, (A4)

where the Ta(y) are Chebyshev polynomials. The vari-
able y (defined below) is a function of the pressure having
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the property that y = −1 when p = pmin. The constants
pmin and Υmin are evaluated from the low-density equa-
tion of state at the point p = pmin where it matches onto
the high density spectral representation determined by
Eq. (A4). Choosing pmin and Υmin in this way ensures
that no artificial first- or second-order phase-transition
discontinuity is introduced at the matching point. These
expansions guarantee that Υ(p) ≥ 0 for every choice of
υa. Therefore any equation of state determined from one
of these Υ(p, υa) automatically satisfies the causality and
thermodynamic stability conditions.
Chebyshev polynomials are defined by the recursion

relation Ta+1(y) = 2yTa(y) − Ta−1(y) with T0(y) = 1
and T1(y) = y. Spectral expansions using Chebyshev
basis functions are well behaved on the domain −1 ≤
y ≤ 1 [27]. Therefore the variable y that appears in
Eq. (A4) has been defined as

y = −1 + 2 log

(

p

pmin

)[

log

(

pmax

pmin

)]

−1

, (A5)

to ensure that −1 ≤ y ≤ 1 for pressures in the

range pmin ≤ p ≤ pmax. The factor 1 + y that ap-
pears in Eq. (A4) ensures that Υ(p, υa) has the limit,
Υ(pmin, υa) = Υmin, for every choice of spectral pa-
rameters υa. The values of the equation of state pa-
rameters used in this study to model the high-density
portion of the GM1L equation of state are pmin =
1.20788× 1032 erg/cm3, pmax = 8.87671× 1035 erg/cm3,
ǫmin = 5.08587× 1013 g/cm3, and Υmin = 277.532.
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